

$\mathbf{DPP} - 4$

/ideo S	Solution or	n Website:-	https://p	hysicsaholics.com	/home	/courseDetails	/59
Ideo L	Joianon of	i Weblie.	πτιρσ.// ρ	rry siesariones.com	/ 110111C	CourseDetails	ט א

Video Solution on YouTube:- https://youtu.be/J1QxWKQDqdQ

Written Solution on Website: https://physicsaholics.com/note/notesDetalis/33

- Q 1. The specific heat of hydrogen gas at constant pressure is $C_P = 3.4 \times 10^3$ cal/kg°C and at constant volume is $C_v = 2.4 \times 10^3$ cal/kg°C. If one-kilogram hydrogen gas is heated from 10°C to 20°C at constant pressure, the external work done on the gas to maintain it at constant pressure is
 - (a) 10^5 cal

(b) 10^4 cal

(c) 10^3 cal

- (d) 5×10^3 cal
- Q 2. Calculate the change in internal energy when 5g of air is heated from 0°C to 2°C. Specific heat of air at constant volume is 0.172 cal/g-°C
 - (a) 7.2 J

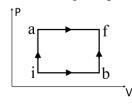
(b) 3.6 J

(c) 11.4 J

- (d) 36 J
- Q 3. When heat energy of 1500 Joules, is supplied to a gas at constant pressure 2.1×10^5 N/ m^2 , there was an increase in its volume equal to 2.5×10^{-3} m^3 . The increase in internal energy of the gas in Joules is
 - (a) 450

(b) 525

(c) 975

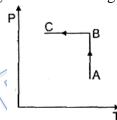

- (d) 2025
- Q 4. A system is given 400 calories of heat and 1000 Joule of work is done by the system, then the change in internal energy of the system will be
 - (a) 680 Joule
- (b) 680 erg
- (c) 860 Joule
- (d) 860 Joule
- Q 5. A gas is compressed from $10 \ m^3$ volume to $4 \ m^3$ volume at constant pressure of $50 \ N/m^2$. Then the gas is heated by giving it $100 \ \text{Joules}$ of energy. The internal energy of the gas will-
 - (a) Increase by 100 Joule
 - (b) increase by 200 Joule
 - (c) increases by 400 Joule
 - (d) decrease by 200 Joule.
- Q 6. The amount of heat required to raise the temperature of a diatomic gas by 1°C at constant pressure is Qp and at constant volume is Qv. The amount of heat which goes as internal energy of the gas in the two cases is nearly -
 - (a) Op & Ov
- (b) 0.71 Qp & 0.71 Qv
- (c) 0.71 Qp & Qv
- (d) 0.7 Qp & 0.9 Qv

hysicsaholics

Q 7. When a system is taken from state i to state f along the path iaf, it is found that Q = 50 cal and W = 20 cal. Along the path ibf Q = 36 cal. W along the path ibf is-

(a) 6 cal

(b) 16 cal


(c) 66 cal

- (d) 14 cal
- Q 8. 140 calories of heat is required to raise the temperature of 2 moles of an ideal gas at constant pressure from 40° C to 50° C (R = 2 cal/mol- $^{\circ}$ C). The gas may be:
 - (a) H₂
- (b) He
- (c) CO₂
- (d) NH₃
- Q 9. The pressure of given mass of a gas in a thermodynamic system is changed in such a way that 20 joule of heat is released from the gas and 8 joule of work is done on the gas. If the initial internal energy of the gas was 30 joule then final internal energy will be
 - (a) 2 Joule

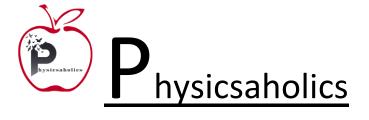
(b) 42 Joule

(c) 18 Joule

- (d) 58 Joule
- Q 10. Ideal gas is taken through the process shown in the figure, mark the wrong statement:

- (a) In process AB, work done by system is positive.
- (b) In process AB, heat is rejected.
- (c) In process AB, internal energy increases.
- (d) in process AB internal energy decreases and in process BC, internal energy increases.
- Q 11. A given quantity of gas can be taken from a state A to a state B by two different processes. Let ΔQ and W represent the heat supplied to the gas and the work done by the gas respectively. Which of the following must be a constant for both processes?
 - (a) $\Delta Q + W$

(b) *∆Q*

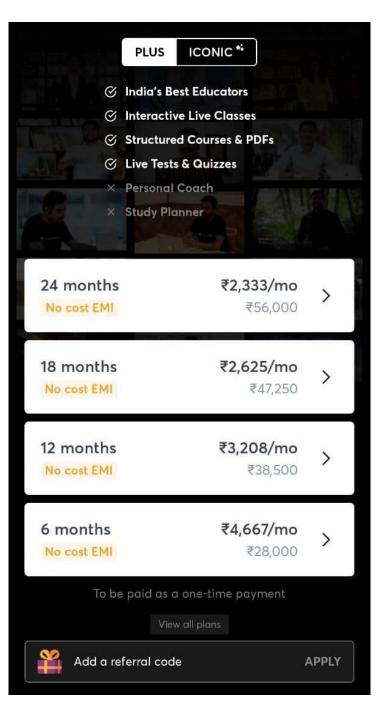

(c) W

- (d) $\Delta Q W$
- Q 12. A system absorbs 100 calories of heat and the system does 1675 Joule work. The internal energy of the system increases by 2515 Joule. The value of J is -
 - (a) 4.18 Cal/Joule

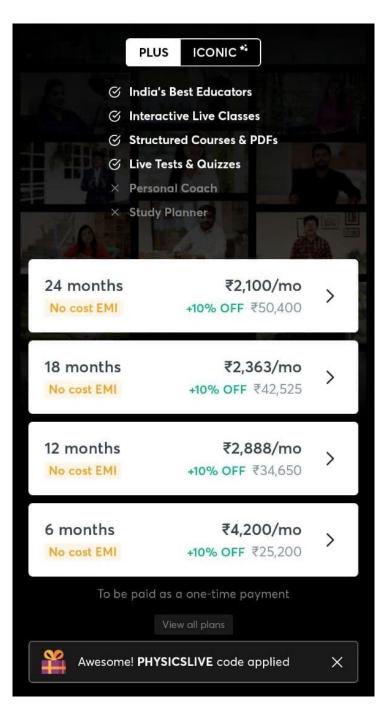
(b) 420 Joule/cal

(c) 42 Joule/cal

(d) 4.19 Joule/cal



Answer Key


Q.1 b	Q.2 a	Q.3 c	Q.4 a	Q.5 c
Q.6 c	Q.7 a	Q.8 a	Q.9 с	Q.10 d
Q.11 d	Q.12 d			

PRATIES ALIONINGS

Use code PHYSICSLIVE to get 10% OFF on Unacademy PLUS.

NEET & JEE Main Physics DPP- Solution

DPP- 4 Thermodynamics- Applying FLOT in different thermodynamic processes

By Physicsaholics Team

Solution 1:

Solution 1:

$$C_p = 3.4 \times 10^3 \text{ cal/kg}^2$$
 $C_V = 2.4 \times 10^3 \text{ cal/kg}^2$

at constant volume

 $d\omega = 0$
 $(dg) = DU + (d\omega)_V$
 $(dg)_V = DU + 0$
 $DU = (dg)_V - DU + (d\omega)_P$
 $(d\omega)_P = (dg)_P - (dg)_V$
 $(d\omega)_P = (dg)_P - (dg)_V$

Ans. b

Solution 2:

aign		4·2 J
	$\Delta V = 0$ $\Delta W = 0$ $\Delta W = 1.72 \times 0$	4.2
>>	dS = SU + dO $dV = dS = NCV ST$ $dV = dS = NCV ST$	Avs.
	M GY BY	
	DU = (5 gm) (0-172 x 0 cal)	
	10 × 9 FZ Cal	
	J. F. Cal	
	DUE 1. + L Cal	Ans. a

Solution 3:

and given;
$$P = 2.1 \times 10^5 \text{ W/m}^2$$

(constant)

So; Fan Isobanic Brocess

 $\omega = P \Delta V = 2.1 \times 10^5 \times 2.5 \times 10^3$
 $\omega = 2.1 \times 10^5 \times 10^2 = 21 \times 2.5$
 $\omega = 525 \text{ J}$

And, Heat supplied to gos $\omega = 1500 \text{ J}$ (given)

 $\Delta U = \sqrt{9} + \sqrt{3} = 15\omega - 525$
 $\Delta U = \sqrt{9} + \sqrt{3} = 15\omega - 525$

Ans. c

Solution 4:

$$\Delta \theta = 400 \text{ (al)} = 400 \times 42 \text{ J} = 1680 \text{ J}$$

$$\Delta \theta = 400 \text{ J}$$

$$\Delta \theta = 400 \text{ Hoso}$$

$$1680 = 10 + 1000$$

$$\Delta \theta = 680 \text{ J}$$

$$\Delta \theta = 400 \text{ (al)} = 400 \times 42 \text{ J} = 1680 \text{ J}$$

$$\Delta \theta = 400 \text{ Hoso}$$

Solution 5:

$$\mathcal{N}_{gas} = PLV = 50 (4-10) = -300 \text{ }$$

$$40 = 100 \text{ }$$

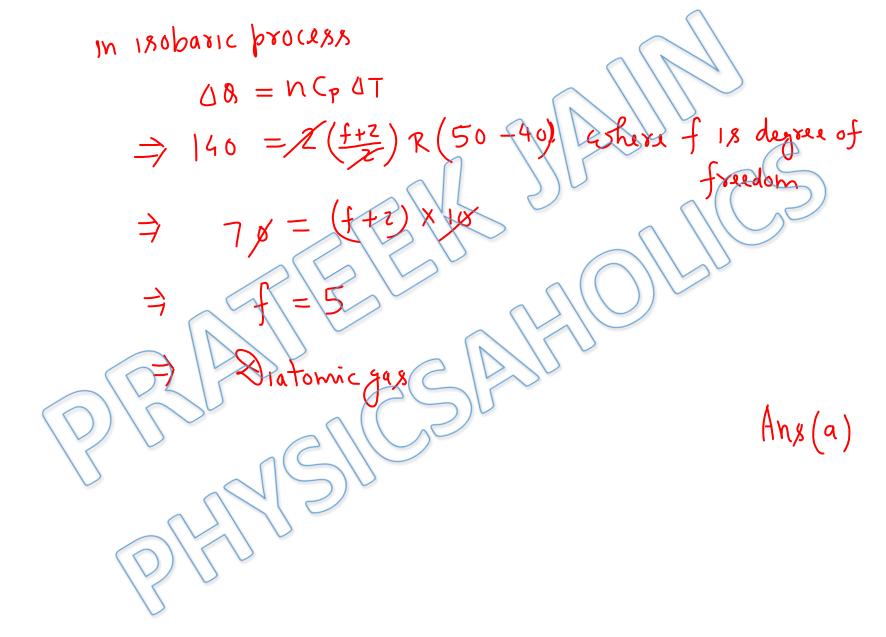
$$100 = 20 = 300$$

$$400 = 400 \text{ }$$
Internal energy inereased by 400 \tag{7}

Solution 6:

for diatomic gas
$$\frac{C_P}{C_V} = Y = 1 + \frac{2}{F} = 1 + \frac{2}{5} = \frac{7}{5}$$
 $10 = n < 4T$
 $\Rightarrow 0p = n < p$
 $\Rightarrow \frac{0p}{8v} = \frac{C_P}{C_V} = \frac{7}{5}$

In any process,


 $10 = n < 4T$
 $10 = n <$

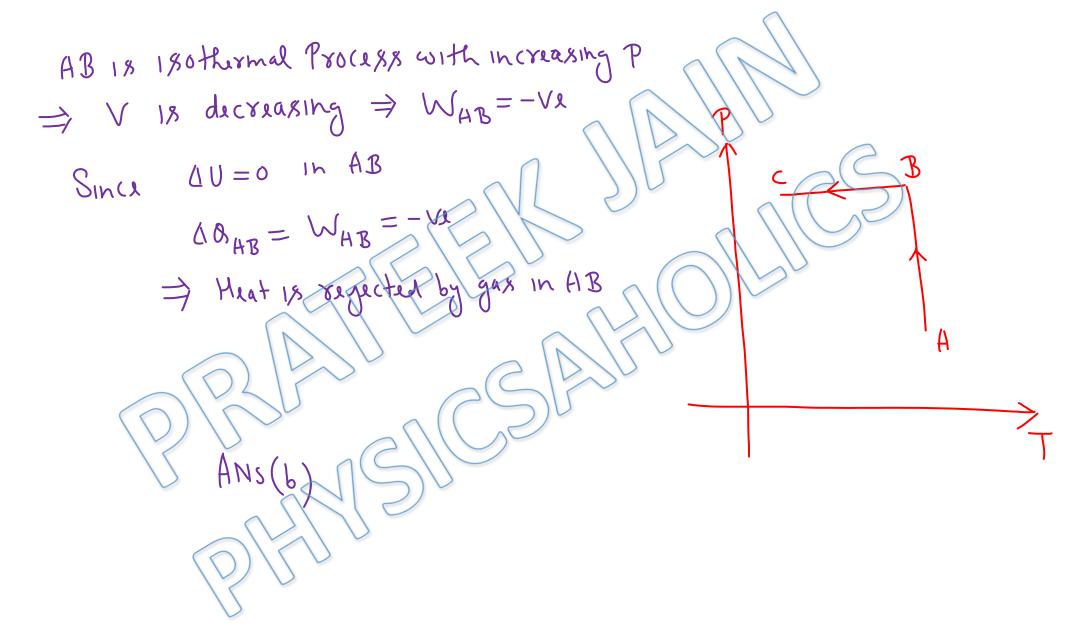
Solution 7:

both paths are moving from same initial state to

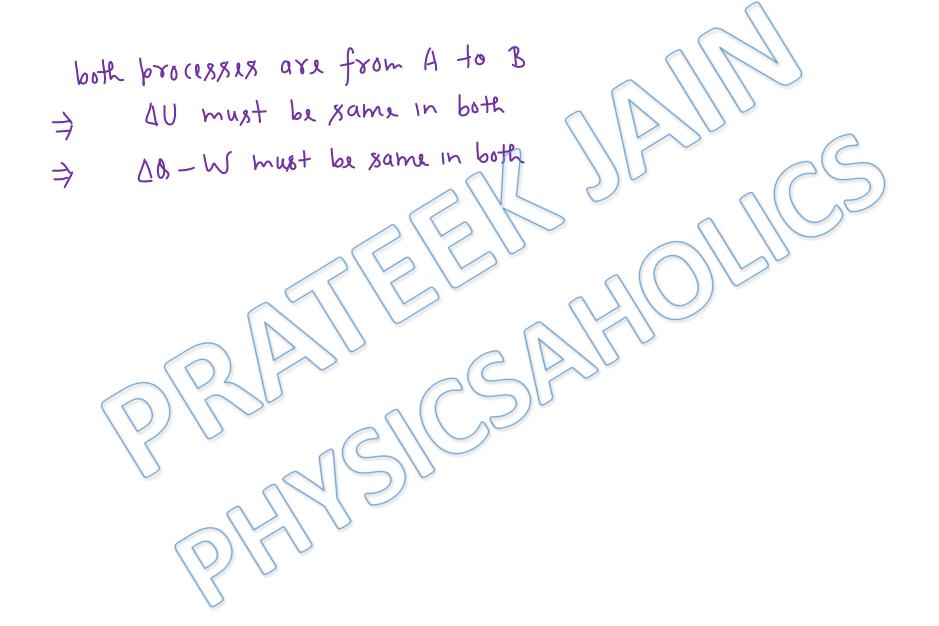
Ans. a

Solution 8:

4


Solution 9:

$$\Rightarrow -20 = (U_f - 30) + (-8)$$


$$\Rightarrow U_f = 38 - 20 = 18 \text{ T}$$

$$Ahx(c)$$

Solution 10:

Solution 11:

Ans. d

Solution 12:

For Video Solution of this DPP, Click on below link

Video Solution on Website:-

https://physicsaholics.com/home/courseDetails/59

Video Solution on YouTube:-

https://youtu.be/J1QxWKQDqdQ

Written Solution on Website:-

https://physicsaholics.com/note/notesDetalis/33

@Physicsaholics

@Physicsaholics_prateek

@<u>IITJEE_Physics</u>

physicsaholics.com

Unacademy

CUSIS NIKIS